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     A data mining based procedure for automated reverse engineering and defect discovery has been developed. The data mining algorithm 
for reverse engineering uses a genetic program (GP) as a data mining function. A GP is an evolutionary algorithm that automatically evolves 
populations of computer programs or mathematical expressions, eventually selecting one that is optimal in the sense that it maximizes a fitness 
function. The system to be reverse engineered is typically a subcomponent of a sensor that may not be disassembled and for which there are no 
design documents. The sensor is used to create a database of input signals and output measurements. Rules about the likely design properties of 
the sensor are collected from experts. The rules are used to create a fitness function for the GP, allowing GP-based data mining. This procedure 
incorporates not only the experts’ rules into the fitness function, but also the information in the database. The information extracted through this 
process is the internal design specifications of the sensor. These design properties can be used to create a fitness function for a genetic algorithm 
(GA), which is in turn used to search for defects in the digital logic (DL) design. In this report, design flaws in two different sensor systems are 
detected using a GA. One of these systems makes passive detections, the other makes up part of a radar. In the second case, detecting the flaw 
allows the design of a radar jamming signal. Uncertainty related to the input-output database and the expert-based rule set can significantly alter 
the reverse engineering results. This report provides significant experimental and theoretical results related to GP-based data mining for reverse 
engineering. It presents methods of quantifying uncertainty and its effects. It provides closed-form results that maximize the GP’s fitness func-
tions to facilitate understanding of uncertainty. Finally, it examines methods for reducing the uncertainty.
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1 

EVOLUTIONARY ALGORITHM BASED AUTOMATED REVERSE ENGINEERING 
AND DEFECT DISCOVERY 

 
 
 
1. INTRODUCTION 
 

An engineer has a borrowed system and must determine what design flaws may be present. The 
owner of the system will not allow it to be disassembled, and the design specifications for the system are 
not available. The engineer has access to good information about the period in which the system was 
designed and constructed and about its cost, and from this can infer the parts most likely used. The 
engineer also knows that the engineers who designed the system were subject to significant cost 
constraints, so the design is very efficient. Finally, the engineer has access to a historical database of input 
and output data associated with the system. 

 
Frequently, engineers pursue a trial and error approach to this problem of determining design defects, 

but this can prove very time consuming if the system is complex. Also, experimental time can be 
extremely costly; if the engineer can predetermine the most likely input prior to actual experimentation in 
the lab, then the savings can be enormous. So it would be useful if an automated procedure were available 
for discovering design flaws. 
 

To solve this problem, a data mining [1] based procedure for automated reverse engineering and 
defect discovery has been developed and applied to digital logic (DL) examples. The data mining 
algorithm for reverse engineering uses a genetic program (GP) as a data mining function. A GP is an 
algorithm based on the biological theory of evolution that automatically evolves populations of computer 
programs or mathematical expressions, eventually selecting one that is optimal in the sense that it 
maximizes a measure of effectiveness, referred to as a fitness function [2-5]. The system to be reverse 
engineered is typically a subcomponent of a sensor, like the system whose design is depicted in Fig. 1. 
The sensor is used to create a database of input signals and output measurements. Rules about the likely 
design properties of the sensor are collected from experts. The rules are used to create a fitness function 
for the GP. GP-based data mining is then conducted [3-5]. This procedure incorporates not only the 
expert’s rules, but also the information in the database, into the fitness function. The information 
extracted through this process is the internal design specifications of the sensor. The design properties 
extracted through this process can be used to create a fitness function for a genetic algorithm (GA) [6-15], 
which in turn is used to search for defects in the sensor design. Unlike a GP, a GA manipulates strings of 
numbers, not computer programs, with the intent of producing optimal results by maximizing a fitness 
function. The process of reverse engineering using GP-based data mining followed by using a GA to 
automatically find defects in the DL discovered by the GP is summarized in Fig. 2. The defect in the DL 
design is represented by a signal evolved by the GA. 
 

Section 2 of this report introduces GAs and GPs. Section 3 discusses data mining and the use of a GP 
as a data mining function. Section 4 examines the DL design to be reverse engineered using GP-based 
data mining. Section 5 explains the GP’s terminal set, function set, fitness function, stopping criteria, 
parameters, and data mining results. Section 6 discusses how a GA can be used to automatically 
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discover defects in the design of DL for a passive sensor system and includes an example of output. 
Section 7 discusses GA-based automatic discovery of a flaw in a textbook radar sidelobe blanker design. 
The output of the GA is a signal that is compared in a summary plot to a mathematically derived signal 
that represents “truth,” supporting the effectiveness of the GA-based procedure. Section 8 provides 
conclusions. Appendix A provides mathematical details related to the constant false alarm rate (CFAR) 
algorithm used in the radar example. Appendix B gives detailed formulations of the rule fitness, fitness 
score, input-output fitness, and overall fitness for GP-based data mining. It also presents closed-form 
results for a class of DL maps that provide a global maximum for the rule fitness. From these closed-form 
results, a short input-output database is derived in closed form to facilitate uncertainty analysis. Appendix 
B also provides experimental results with detailed descriptions of the evolutionary properties. The class of 
solutions found in Appendix B is shown to be intrinsically related to the GP’s evolutionary process. 
 
 
 

 
 
 
 

Fig. 1 — A system of three sensors designed to measure signals from source 1 
while minimizing the corrupting influences of signals from sources 2 and 3 
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Fig. 2 — Overview of genetic program based reverse engineering 
and genetic algorithm based automatic defect detection 

 
 
2. GENETIC ALGORITHMS AND GENETIC PROGRAMS 
 

The following subsections describe GAs and GPs, the differences between the algorithms’ structures 
and applications, and some characteristics specific to the GP used for data mining. 
 
2.1 Genetic Algorithm 
 

A GA is an optimization method that manipulates a string of numbers in a manner similar to how 
chromosomes are changed in biological evolution [6-15]. An initial population made up of strings of 
numbers is chosen at random or is specified by the user. Each string of numbers is called a “chromosome” 
and each numbered slot is called a “gene.” A set of chromosomes forms a population. Each chromosome 
represents a given number of traits that are the actual parameters that are being varied to optimize the 
fitness function. The fitness function is a performance index that is to be maximized. 

 
The operation of the GA proceeds in steps. Beginning with the initial population, “selection” is used 

to choose which chromosomes should survive to form a “mating pool.”  Chromosomes are chosen based 
on how fit they are (as computed by the fitness function) relative to the other members of the population. 
More fit individuals end up with more copies of themselves in the mating pool so that they will more 
significantly affect the formation of the next generation.  

 
Next, two operations are taken on the mating pool: crossover and mutation. First, “crossover” (which 

represents mating, the exchange of genetic material) occurs between parents. In crossover, a random spot 
is picked in the chromosome, and the genes after this spot are switched with the corresponding genes of 
the other parent. Following this, “mutation” occurs. Mutation is a change of the value of a randomly 
selected gene.  
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After the crossover and mutation operations occur, the resulting strings form the next generation and 
the process is repeated. Another process known as “elitism” is also employed. Elitism consists of copying 
a certain number of fittest individuals into the next generation to make sure they are not lost from the 
population. Finally, a termination criterion is used to specify when the algorithm should stop, e.g., when a 
preset maximum number of generations has been reached, when the fitness has gained its maximum 
possible value, or when the fitness has not changed significantly in a certain number of generations. 

 
2.2 Genetic Program 
 

A GP [2-5] is a problem-independent method for automatically creating graphs that represent 
computer programs, mathematical expressions, digital circuits, etc. Like a GA, it evolves a solution using 
Darwin’s principle of survival of the fittest. Unlike the GA, of which it can be considered an extension, its 
initial, intermediate, and final populations are computer programs. 

 
Like a GA, the individuals that make up the population are subject to selection, crossover, mutation, 

and elitism. The crossover and mutation operations are constrained to produce structurally valid offspring, 
i.e., functional computer programs, digital circuits, etc. Two additional GP operations not used with GAs 
are architecture-altering steps (AAS) [2] and symmetrical replication (SR). 

 
AAS is a method introduced to improve the GP’s convergence. This function randomly changes 

genes in elite chromosomes, i.e., typically the 50 chromosomes with the highest fitness. For the DL 
diagram of Fig. 1, AAS might consist of changing H1 to H3 or SUM_SIG123 to SUM_SIG2. This notation 
is explained in greater detail in sections 4 and 5. 

  
SR refers to replacing a branch entirely with another branch that already existed on the chromosome. 

SR is similar to mutation; it is not used often and its purpose is to break out of the local fitness landscape, 
if possible. Like mutation, this replication happens after a specific number of generations have achieved 
the same maximum fitness. SR is designed to help the GP escape the neighborhood of what may be a 
local maximum so that the GP can locate the global maximum. Finally, it is generally applied to only a 
small random set of the elite chromosomes; this allows the GP to better search the space while 
maintaining diversity in the population. 
 

GPs require a terminal set and function set as inputs. The terminals are the actual variables of the 
problem. These can include a variable like “x” used as a symbol in building a polynomial, and real 
constants. The function set consists of a list of functions that can operate on the variables. For example, in 
a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], 
the terminal set consisted of fuzzy membership functions and the function set consisted of logical 
connectives like AND and OR and logical modifiers like NOT. Since fuzzy logic allows more than one 
mathematical representation of AND and OR, the function set could be complicated. When the GP is used 
as a data mining function, a database of input and output information is required. In the case of fuzzy 
decision trees, the database represented a collection of scenarios about which the fuzzy decision tree to be 
evolved would make decisions. The database also had entries created by experts representing decisions 
about the scenarios. The optimal fuzzy decision tree would be the one that could most closely reproduce 
the experts’ decisions about the scenarios. When the GP is used as a data mining function for evolving 
DL, the database contains inputs to the DL as well as measured outputs. The experts’ opinions are 
manifested in the selection of the input and associated output to be included in the database. For the DL 
case, an additional form of input consisting of “rules” about DL construction is included. The terminal 
set, function set, database to be data mined, and rules for DL construction are described in greater detail 
in sections 4 and 5. 
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3. EVOLUTIONARY ALGORITHM BASED DATA MINING 
 
Data mining is the efficient extraction of valuable non-obvious information embedded in a large 

quantity of data [1]. Data mining consists of three steps: constructing a database that represents truth; 
calling the data mining function—e.g., a clustering algorithm, neural net, GA, GP, etc.—to extract the 
valuable information; and determining the value of the information extracted in the second step, which 
generally involves visualization. 

 
When used for reverse engineering, the GP typically data mines a database to determine a graph-

theoretic structure, e.g., a system’s DL diagram or an algorithm’s flow chart or decision tree [3-5]. The 
GP mines the information from a database consisting of input and output values, e.g., a set of inputs to a 
sensor and its measured outputs. GP-based data mining will be applied to the construction of the DL 
described in section 4. 

 
To use the GP it is necessary to construct terminal and function sets relevant to the problem. Before 

the specific terminal and function sets for the reverse engineering problem are described, a more detailed 
description of the DL to be considered is given in section 4. 

 
4. THE DIGITAL LOGIC TO BE REVERSE ENGINEERED 
 

The first example of a DL to be reverse engineered is depicted in Fig. 1. This DL is not known to the 
GP. The GP only has access to a database of input signals to the DL and measured output, as well as a 
collection of rules provided by experts for building the DL.  
 

In Fig. 1, the DL consists of three input channels, each with a sensor attached. The sensors receive 
signals from sources 1, 2, and 3. Only measurements from source 1, the central source, are of interest. 
Source 1 is a sufficiently weak emitter that any energy from it that goes into sensors 1 or 3 can be 
neglected. Unfortunately, sensor 2’s measurement may be corrupted by emissions from sources 2 and 3. 
Fortunately, sources 2 and 3 do not always emit in the same time window as source 1, allowing the output 
of source 1 to be measured. The DL is constructed so that if there is significant corruption of sensor 2’s 
measurements, the final OR-gate returns unity, so the measurements can be ignored. 
 

Figure 1 depicts a number of DL elements that are used repeatedly. DL components and signals will 
ultimately become elements of the GP’s terminal and function sets. The sensors in Fig. 1 will receive an 
analog signal and convert it to a digital form, i.e., they will map real-valued input to the set of integers. A 
sampling window of size N is used, i.e., the signal is sampled every Δt seconds for a total of N samples in 
that window. The sample is indicated by the vector js

r  in Eq. (1) with sampling beginning at time to. The 
j-subscript implies the signal originates in the jth source, where j=1,2,3. 
 
 ]))1((,...),(),([ tNtsttstss ojojojj Δ⋅−+Δ+=

r  (1) 
 
The DL function SUM given in Eq. (2), represents the logarithmic sum of the absolute value of the 

time components of the digitized input that has been received for a single window of length N. 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
∑ Δ⋅−+=
=

N

k
ojj tktssSUM

1
))1((ln)(

r  (2) 

 
The elements labeled Hi , for i=1,2,3, are Heaviside step functions as given in Eq. (3). If the input is 

greater than or equal to a threshold τi , for i=1,2,3, then a value of unity is transmitted; otherwise a zero is 
transmitted. 
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The DL function MAX given in Eq. (4) returns the natural logarithm of the maximum absolute value 

of the time components of the input signal for a single window of length N. The element labeled DIFF 
takes the difference between input to its first and second terminals as indicated in Eq. (5). 
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The DL function OR3DELAY takes only Boolean inputs, i.e., it expects zero or one as an input. It 
waits until it has three consecutive inputs from three consecutive time windows, hence the “3” in its 
name. Once it receives three consecutive inputs, it yields as an output the maximum of its inputs. Not 
depicted, but also used in the GP’s function set, is AND3DELAY, which takes three inputs of zero or one 
corresponding to three consecutive time windows and yields as output the minimum of its inputs. 
AND2DELAY uses only two inputs and returns their minimum. Finally, the symbols labeled AND3, OR3, 
AND2, and OR2 are the conventional logical connectives AND and OR, with the numerical designation 
indicating the number of inputs expected, e.g., AND3 expects three Boolean inputs. 
 

The signals are additive; at any given time, sensor 2 may record a superposition of the three sources’ 
transmissions, which is represented by s1(t) + s2(t) + s3(t). If the three sensors’ signals are of sufficient 
magnitude, the measurement is considered corrupted and the final OR in Fig. 1 returns unity. 
 
5. TERMINAL SET, FUNCTION SET, FITNESS FUNCTION, PARAMETERS, AND DATA 
MINING RESULTS 
 

This section describes the terminal set, function set, database construction, fitness function, the GP’s 
essential parameters, and the results of data mining for the DL represented by Fig. 1. The description is 
given in terms of DL elements and properties, but the GP-based reverse engineering technique is very 
general and can be applied to any system that can be described in a graph-theoretic language, e.g., 
decision processes described in terms of decision trees [3-5]. 
 
5.1 Terminal and Function Sets 
 

The terminal set consists of the following elements: 
 
 T={SUM_SIG123, MAX_SIG123, SUM_SIG2, MAX_SIG2, SUM_SIG3, MAX_SIG3} (6) 
 
where 
 
 SUM_SIG123 = SUM( 321 sss rrr

++ ), (7) 
 
 MAX_SIG123 = MAX( 321 sss rrr

++ ), (8) 
 
 SUM_SIG2 = SUM( 2sr ), (9) 
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 MAX_SIG2 = MAX( 2sr ), (10) 
 
 SUM_SIG3 = SUM( 3sr ), (11) 
 
and 
 MAX_SIG3 = MAX( 3sr ). (12) 
 
All sensor measurements begin at time to. 
 

The function set consists of the following elements: 
 
 F={AND3, OR3, AND2, OR2, AND3DELAY, OR3DELAY, H1, H2, H3, DIFF}. (13) 
 
The function AND3DELAY is not used in Fig. 1. By including it, the GP’s ability to discriminate against 
extraneous functions is emphasized. 
 

The GP’s goal is to evolve a solution that represents Fig. 1. The GP’s ability to do this will be 
determined largely by the fitness function and the underlying databases, discussed below. The 
chromosome to be evolved by the GP in prefix notation that represents Fig. 1 is given in Eq. (14):  

 
 
 OR2 OR3DELAY AND3 H3 SUM_SIG3 H2 DIFF SUM_SIG3 SUM_SIG123 H1 MAX_SIG123 
 OR3DELAY AND3 H3 SUM_SIG2 H2 DIFF SUM_SIG2 SUM_SIG123 H1 MAX_SIG123. (14) 
 
 
5.2 Creating the Database 
 

The database used for constructing the fitness function consists of inputs to the system to be reverse 
engineered and measured output. For the DL diagram of Fig. 1, the input is a collection of signals from 
sources 1 through 3 and the associated measured output. The output of the DL represented by Fig. 1 will 
consists entirely of zeros and ones. The fact that the system maps real-valued input into the doublet set {0, 
1} complicates the reverse engineering process. For a case like this, the rule set used to construct the 
fitness function is of paramount importance if a unique solution is to be found. These rules correspond to 
conditions provided by human experts regarding what elements the logic may have, how they are 
interconnected, and their abundance.  
 
5.3 Calculating the Fitness Based on Rules and Parsimony Pressure 
 

This subsection discusses a few of the rules used to construct the fitness function. Typically, each rule 
represents a desirable feature that the final solution must have or might have. Toward this goal, candidate 
solutions, i.e., chromosomes within the GP’s evolving population, are given a higher fitness for showing 
characteristics consistent with the rules. 
 
5.3.1 Rule Examples and Their Rewards 
 

For the DL depicted in Fig. 1, a number of rules can be developed without knowing the specific 
design. For example, when actually using the DL or upon close analysis of input-output relations it is 
observed that the logic waits for a period corresponding to three consecutive time windows before making 
a declaration. Based on the logic’s function the following rule is formulated: 
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Rule 1: There must be a three-time-window time delay built into the DL.  
 
Another rule provided by experts is 
 

Rule 2: The DL must have a delay near the output level. 
 
Since data and expert intuition seem to indicate that there is an AND or OR at the end, this rule follows: 
 

Rule 3: The last operation is a Boolean. 
 
It follows from the properties of the hardware implementation of the Heaviside step function and the 
DIFF operator that  
 

Rule 4: The Heaviside step function must take an integer input; 
 
and 
 

Rule 5: The DIFF operator must have a two-signal input. 
 
Likewise, Rule 6 represents common sense: 
 

Rule 6: It is unlikely that there is a functional composition of Heaviside step functions. 
 

In each case when the GP determines that a candidate solution satisfies the rule, the fitness for that 
solution is incremented. Other rules were used, but the above set captures the spirit of how rules are 
obtained and rewards are awarded. So it is observed that some of the rules arise from an observation (like 
Rule 1), but others arise from properties of the logic elements (Rule 3) or from common sense (Rule 6). 
The rules as presented here have been simplified for ease of understanding. Appendix B provides a more 
detailed description of the rules actually used. 

 
5.3.2 Controlling Bloat 
 

One of the fundamental problems associated with genetic programming is controlling bloat. Bloat 
[16] refers to excessive growth of candidate solutions. It is found empirically that every 50 generations, 
the length of candidate solutions, i.e., chromosomes within a GP’s evolving population, increases by a 
factor of three. Various procedures have been invented for controlling bloat. Two of the most popular are 
the Koza depth limit [2] and parsimony pressure [3-5, 16]. Another technique has been invented recently 
that involves the use of computer algebra to control bloat when using a GP to evolve mathematical 
expressions [3]. This algebraic approach was not used for the study described here but may be applied in 
a future extension of this work. 
 

The procedure applied for evolving the DL of Fig. 1 was parsimony pressure. The parsimony pressure 
can be regarded as a numerical representation of Occam’s razor [17]. Just as Occam’s razor favors the 
simpler of two hypotheses that explain a data set, parsimony pressure favors the simpler, i.e., the shorter 
of two DL designs with the same basic fitness. The basic fitness is the fitness determined by the rules and 
input-output database. The parsimony pressure for a given chromosome is calculated by multiplying the 
parsimony coefficient, α, by the length of the chromosome. The overall fitness is determined by 
subtracting the parsimony pressure from the basic fitness. Thus given two candidate solutions with the 
same basic fitness, the shorter of the two will have the higher overall fitness.  
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5.4 Setting the GP’s Parameters 
 

The GP requires the specification of many parameters for efficient operation. Modification to these 
parameters can have a significant impact on the convergence time and solution found by the GP. Some of 
the most important parameters are population size, database size, probability of mutation, probability of 
crossover, and parsimony pressure. 

 
The size of the population of evolving chromosomes is very important. A large population can 

represent a significant degree of diversity, potentially resulting in the determination of a better solution. 
Increased population size can also have a significant effect on run time. The default population size used 
for the DL depicted in Fig. 1 is 1000. 

 
Increasing the size of the database can have a significant effect. A larger database may contribute to 

the determination of a unique solution or a smaller final class of high fitness potential solutions. 
Unfortunately, given that the DL in Fig. 1 maps from real-valued inputs to the doublet set {0, 1}, the 
benefits of a larger database are limited. It becomes important to embed high-quality rules in the fitness 
function, rewarding good candidate solutions, i.e., those consistent with the rules, and penalizing poor 
quality chromosomes.  

 
The probabilities of crossover and mutation can also be very important. Low probabilities of 

crossover and mutation can result in only limited regions of the fitness landscape being explored, i.e., the 
GP will get locked into a local neighborhood and not escape. 

 
Two other parameter-dependent operations are AAS and SR, which are applied to the elite 

chromosomes, i.e., the top 50 with the highest fitness. When applying AAS, the GP selects about 63% of 
the elite chromosomes in each generation. Likewise, SR is applied to 7% of the elite chromosomes that 
have been through 12 generations where the maximum fitness has not changed. 

 
Appendix B gives detailed formulations of the rule fitness, fitness score, input-output fitness, and 

overall fitness for GP-based data mining. Closed-form results for a class of DL maps that provide a global 
maximum for the rule fitness are given. From these closed-form results a short input-output database is 
derived in closed form to facilitate uncertainty analysis.  

 
5.5 Data Mining Results 

 
The GP successfully discovered the DL of Fig. 1 through data mining after 60 generations using the 

parameters given in the previous subsection. The SR operation proved to be very effective and helped 
accelerate convergence significantly. 

 
Appendix B provides experimental results with detailed descriptions of the evolutionary properties. 

The class of solutions found in Appendix B is shown to be intrinsically related to the GP’s evolutionary 
process. 

 
6. AUTOMATED DEFECT DISCOVERY USING A GENETIC ALGORITHM 
 

The second phase of this work, automatic defect detection, involves use of a GA instead of a GP. The 
automatic defect detection methodology will use a GA to automatically evolve signals that characterize 
design defects. Like a GP, the GA requires a fitness function. The DL automatically determined by the 
GA will be used to construct the GA’s fitness function. 
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6.1 Automatically Finding Defects in Digital Logic for a Passive Sensor System 
 

The function of the DL in Fig. 1 is to determine if emissions from sources 2 and 3 are corrupting the 
measured emission from source 1. If only data from source 1 is measured, the DL is expected to return a 
zero, but if sensor 2’s measurements are corrupted by contributions from sources 2 and 3, then the DL 
returns unity. If the output of the DL is unity, the measurement is discarded. The intention of the design 
engineers was that the DL would allow relatively uncorrupted measurements of the output of source 1 to 
be recorded. 
 

Given the design indicated by Fig. 1, if the original design engineers were not careful, it might be 
possible for sensors 1 and 3 to receive signals 2s

r  and 3s
r  of sufficiently low magnitude that the DL does 

not recognize them as corruption. At the same time, they obscure the characteristics of the desired signal 
1s
r  broadcast by source 1 and received by sensor 2. Such an event would represent a significant defect. It 
is this defect that the GA actually found. The defect found by the GA reflects the fitness function used. It 
is possible for the GA to find many other defects given other fitness functions.  
 

The defect signal described above that will escape detection by the DL takes the form  
 

 ,321 sssSD
rrrr

++=  (15) 
 
such that there is so little variation in the magnitude of DS

r
 that the signature form of 1s

r  is no longer 
observed. One way of potentially satisfying the constraints is to look for a superposition signal, DS

r
, such 

that it is flat, i.e., it has no variation in magnitude and the signals 2s
r  and 3s

r  do not result in a declaration 
of unity by the DL. 
 

The DL reverse engineered by the GP yields unity if the signals 2s
r  and 3s

r  are of sufficient magnitude 
during any three consecutive time windows. In this section, it is assumed that each time window has a 
length 5; thus three intervals give a time window of length 15. The selection of a time window of length 5 
was made to provide a simple example. It is assumed that the form of signal 1s

r  broadcast by source 1 is 
known, whereas the signals broadcast by sources 2 and 3 are unknown and may vary in time. 
 

The GA will attempt to find signals 2s
r  and 3s

r  such that DS
r

 shows little variation over three 
consecutive time windows, while at the same time the DL declares zero. The fitness function includes 
rules to facilitate finding this solution. It is important to observe that the DL is built into the fitness 
function and used for numerical calculation. 
 

The chromosomes for this application represent the values of candidate solutions for 2s
r  and 3s

r . It is 
not necessary to solve for 1s

r , since it is assumed to be known. Also, unlike GP-based data mining, there is 
no database required for automatic defect discovery. 

 
The chromosome size is 2 × length (time window) × 3, or 30. The factor of two arises because the 

chromosome represents both 2s
r and 3s

r ; the factor of three, because measurements from three consecutive 
time windows are included for both signals. The three time window measurements of 2s

r  are encoded in 
the first half of the chromosome, positions 1 to 15. The second half of the chromosome, positions 16 to 
30, represents 3s

r . Chromosomes were selected to represent both signals to allow genetic information to 
be exchanged between the signals through crossover. 
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The GA uses the following parameter values: the population size is 1000, chromosome size 30, the 
probability of crossover is 90 percent, and probability of mutations 10 percent. The elitism size, i.e., the 
number of highest fitness individuals automatically retained from the previous generation, is 50.  

 
The GA uses as a stopping criterion that the fitness must exceed a threshold, 0.99, or that 1000 

generations have passed. These parameters were determined based on experience with the DL problem 
and GAs.  
 
6.2 Genetic-Algorithm-Determined Signals that Characterize a Defect in the Passive Sensor 
System 
 

When GA-based automatic defect detection is applied to the DL of Fig. 1 using the defect criterion of 
the previous section, the program converges after about 300 generations. The following assumption is 
made: over three consecutive time windows the signal received by sensor 2 due to source 1 is [-1, 2, -3, 
20, -4, -2, 18, -1, 1, 2 , -1, -2, 17, -1, 1]. For the assumed valued of sensor 2’s measurements the GP found 
the following solution for 2s

r and 3s
r over the same three consecutive time windows:  

 
 sensor 1 measurements= [-10, -22, 24, 31, 58, 41, -51, -17, -46, -30, -25, -10, 13, -29, 9 ] (16) 
 
and 
 
 sensor 3 measurements = [51, -20, 19, -11, -14, 1, -7, -22, 5, -12, -14, -28, 10, -10, 30 ]. (17) 
 

It is observed that for the chromosome found, the DL returns zero and the 15 elements of DS
r

 are all 
40 in magnitude, i.e., the magnitude of DS

r
shows no variation over the three time windows. Thus the GA 

has found a significant design flaw in the DL. It is readily observed that this example is very simple. It 
was included to illustrate the potential of the GA-based procedure for automatically finding flaws in 
designs.  
 
7. AUTOMATIC DEFECT DETECTION APPLIED TO RADAR SIDELOBE BLANKERS 
 

A more sophisticated application of automatic defect detection is to the theory of sidelobe blankers 
(SLBs) in radar design. In Fig. 3, radar O desires to detect platform A. Jamming platform B protects A by 
injecting energy into O’s sidelobe. RA is the range of platform A from radar O’s main antenna. RB is the 
range of platform B from radar O’s auxiliary antenna. (The figure does not attempt to preserve scale.) 

 

RA
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A

B

o

Main 
Antenna
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Antenna
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Auxiliary 
Antenna

 
 

Fig. 3 — Radar O, platform to be protected A, and jammer B.  
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The main beam of the radar is used to detect platforms of interest, e.g., a ship or an airplane. The 
radar antenna pattern [18] also has sidelobes. An enemy platform may carry a jamming device designed 
to put energy into radar O’s sidelobe to produce a false target, i.e., a false image on the radar O’s output 
screen. SLBs are designed to defeat this type of countermeasure. The fundamental design requirements 
for a sidelobe blanker are described in [19]: 
 

“Generation of false targets in different directions, other than that of the jammer-carrying 
aircraft, requires injecting jamming signals into the radar’s sidelobes. Many radars 
employ SLBs to defeat this type of electronic counter measure. A sidelobe blanker 
compares the signal detected in its main channel against a signal detected in an auxiliary 
antenna channel. The response of the auxiliary antenna channel is arranged to be greater 
than any main antenna sidelobe response in that direction but less than the antenna’s 
main-lobe response. A signal is blanked if its auxiliary antenna response is greater than 
the main antenna response, which signifies that a sidelobe jammer is present.” 

 
The description above is enough to create the necessary DL design for the SLB. It is useful if an 

additional commonsense constraint is imposed. This constraint is as follows: if the magnitude of the 
signal along the auxiliary antenna exceeds a certain threshold, this should be a condition for blanking. If 
this signal is of large magnitude, then it is obvious that jamming is occurring. 
 

Typically when a signal is blanked by the DL, the input measurement is replaced by thermal noise. It 
might be desirable that something more sophisticated be carried out, but in the classic textbook design 
described by [19], this is what is done. 
 

With the design specifications provided by the quote above and a commonsense observation, it is 
possible to produce the necessary DL. A DL design for a SLB arising from these constraints is given in 
Fig. 4. The formalism in Fig. 4 has the same meaning as in Fig. 1 with the exception that a*SUM and 
b*MAX imply that the SUM and MAX functions used in Fig. 1 are multiplied by parameters a and b. Also, 
there are two additional symbols. The ellipse with the CFAR label represents the CFAR algorithm, 
explained below. The circle on the edge between H1 and AND3 represents the modifier NOT. 
 

Platforms A and B desire to exploit design defects to cause radar O’s DL to blank inappropriately, 
i.e., to blank and subsequently cause the radar O to replace the return from platform A with thermal noise. 
This will deprive radar O’s operator of knowledge of platform A’s presence. 
 

As with the previous example, it is necessary to construct the fitness function for the GA so that the 
jamming signal, i.e., the signal that represents the design defect, can be automatically evolved by the GA. 
Two different sources of information are used to construct the fitness function. The first is the DL that 
was reverse engineered by GP-based data mining. The second is human expertise about what sort of 
jamming is to occur. 
 

Just as in the case of reverse engineering the DL in Fig. 1, when GP-based data mining is applied to 
Fig. 4, a collection of rules about the likely components used in the SLB are required. Likewise, a 
database of measurements is required. If the rules related to the SUM function and the MAX function are 
replaced by a*SUM and b*MAX, then a set of rules similar to those used for Fig. 1 can be used for Fig. 4. 
Finally, the input-output database is created in a straightforward fashion as for the DL design in Fig. 1. 
 
 
 



 
Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery 13 

 

S1+S2
S1

a*SUM

b*MAX

DIFF H1

H2H3

AND3

OR3DELAY

Signal from 
Jammer B

Return from 
Platform A

12

S1+S2
S1

DIFF H1

H2H3

AND3

1122

a*SUM

Auxiliary 
Antenna

Main 
Antenna

CFAR

S1+S2
S1

a*SUM

b*MAX

DIFF H1

H2H3

AND3

OR3DELAY

Signal from 
Jammer B

Return from 
Platform A

1122

S1+S2
S1

DIFF H1

H2H3

AND3

1122

a*SUM

Auxiliary 
Antenna

Main 
Antenna

CFAR

 
 

Fig. 4 — The sidelobe blanker digital logic 
 
 
 

Also, the GP-based data mining process requires a terminal set and function set. Terminal and 
function sets similar to those used for Fig. 1 can be used for Fig. 4 if the same substitutions for SUM and 
MAX are made along with the additions of CFAR and NOT modules to the function set. 
 

The CFAR algorithm determines if the amplitude in a test cell is high enough and then slides on to 
another test cell. It does this as follows. The two range cells adjacent to the test cell are referred to as 
guard cells. When testing, the CFAR algorithm takes the m range cells just before the guard cell 
preceding the test cell, eliminates the maximum amplitude cell from the m cells, then averages over the 
remaining m-1 cells. The CFAR algorithm calculates a similar average for the m range cells after the 
guard cell on the other side of the test cell. 
 

The CFAR algorithm takes the maximum of the two averages and compares them to the test 
amplitude. If the test amplitude exceeds the maximum of the average amplitudes by a certain amount, 
then the test amplitude is passed on to the next processing step. Otherwise, the test amplitude and the two 
guard amplitudes are replaced by the average thermal noise. Afterward, the test window slides on to the 
next test cell. Appendix A provides additional mathematical detail related to the CFAR algorithm. 
 

It should be noted that it is possible to have the GP construct the CFAR module from more basic 
components. Although this was not carried out for this example, it may be pursued in the future. 
 

After making the above substitutions into the rules, terminal set, and function set, and creating the 
input-output database, GP-based data mining was conducted. The DL in Fig. 4 was readily found. This 
process generally required less than two hours of run time on a 2 GHz laptop processor. The same GP was 
used as when the DL design in Fig. 1 was reverse engineered. 
 

Following the reverse engineering of the DL design, the next step in constructing the GA’s fitness 
function is determining a rule about what sort of defect is to be discovered. The defect in the DL’s design 
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to be exploited is that it may be possible for platform B to make it blank through jamming when the 
return from platform A has been received. From looking at the DL design in Fig. 4 it is observed that if 
blanking occurs for range cells before or after the range cell that contains platform A, then platform A’s 
range cell will be blanked also. It follows that platforms A and B desire to use the GA to design a signal 
to exploit this defect, if possible. 
 

So the GA’s fitness function combines the above goal and the DL design. This fitness function was 
subsequently created. It was found that within about 65 GA generations that the necessary signal was 
created. This experiment was conducted many times with the same result. It is interesting to observe that 
for the DL design given in Fig. 4, it is possible to mathematically derive a closed-form-exact solution for 
the necessary jamming signal. This signal was derived mathematically and used as truth to show that the 
GA had converged to the proper signal. A summary of these results is given in Fig. 5. 
 
 
 

100

150

200

Su
m

 o
f S

ig
na

l C
om

po
ne

nt
s

50 100 150 200 250
0

50

No. of Generations

20

Noise Floor

Source Signal 

Closed Form

GA Results

Legend

100

150

200

Su
m

 o
f S

ig
na

l C
om

po
ne

nt
s

100

150

200

Su
m

 o
f S

ig
na

l C
om

po
ne

nt
s

50 100 150 200 250
0

50

No. of Generations

20

Noise Floor

Source Signal 

Closed Form

GA Results

Legend

Noise Floor

Source Signal 

Closed Form

GA Results

Legend

 
 

Fig. 5 — Numerical GA result for sidelobe blanker technique versus closed-form result 
 
 
 
8. CONCLUSIONS AND SUMMARY 
  

Given a system that may not be disassembled and inspected, and for which the design specifications 
are unavailable, it can be difficult to determine the design of its underlying digital logic (DL). A genetic 
program (GP) has been used as a data mining function to reverse engineer DL. The databases that were 
subjected to data mining consisted of known input to the DL and the associated measured output. A set of 
rules provided by experts related to the DL was also used to guide the evolutionary process. 
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 The GP has been proven to be capable of reverse engineering complicated DL designs. It is found 
that having a set of expert rules is essential; the measured output of the DL is rarely sufficient to uniquely 
reverse engineer the design. 

 
Frequently, part of the motivation for reverse engineering DL is to understand potential errors the 

design can introduce into measurement systems. To automate the discovery of design defects, a genetic 
algorithm (GA) based procedure has been developed. This procedure uses the DL design discovered with 
the GP as part of the fitness function for the GA. In addition to DL making up part of the fitness function, 
rules about the design’s expected output during use are incorporated into the GA’s fitness. For the DL 
examples in this report that the GP reverse engineered, the GA was able to find significant defects within 
125 generations for one example and 300 generations for another. 
 

Two GA-based automatic defect detection examples are presented in this report. The first is for a 
passive sensor system and the second is related to finding a radar design flaw in a textbook logic design. 
For the passive sensor case, corrupting signals were found that contaminated measurements. For the radar 
case, the GA found a signal that will cause the radar to blank, i.e., to lose information about returns from 
a detected platform. From the radar designer’s point of view this is a significant design flaw. The radar 
example permits a closed-form-exact mathematical solution for the signal to be derived. The derived 
signal represents a measure of absolute truth for this example. The GA found a solution that agreed with 
the closed-form result within 65 generations. 
 

This report presents explicit formulations of fitness functions and rules. Closed-form results for a 
class of optimal solutions to the rule fitness are shown to be effective in understanding required input-
output database properties. The closed-form results are also extremely useful in understanding the effect 
of rule or input-output database uncertainty on the final solution evolved by the GP.  
 

Experimental observation and theoretical analysis of the effects of uncertainty show that even when 
there is a significant reduction in the quality of rule or input-output measurement information, the DL 
map evolved by the GP will still carry enough information for the design of signals with specific 
properties. The creation of these signals is considered of greater importance than having the exact DL 
design for the sensor device. So the results of the uncertainty analysis related to the closed-form 
expressions are deemed of great importance. 
 

This report provides significant experimental results and theoretical analysis to support the above 
conclusions. It provides reverse engineered DL examples along with details of their evolutionary history 
and the implications of uncertainty. 
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Appendix A 
 

CONSTANT FALSE ALARM RATE ALGORITHM 
 
 

The constant false alarm rate (CFAR) algorithm selects a test range cell and one guard cell on each 
side. The CFAR algorithm eliminates the maximum amplitude from the right-most m cells, R

m
RR rrr ,,, 21 K , 

and the left-most cells, L
m

LL rrr ,,, 21 K . The remaining 1−m  to the right are averaged, and likewise for the 
remaining 1−m  to the left. 
 

The CFAR algorithm takes the maximum of the two averages and compares them to the test 
amplitude. If the test amplitude is sufficiently higher than the maximum of the average amplitudes, then it 
is passed on to the next processing step. Otherwise, the test amplitude and the two guard amplitudes are 
replaced by the average thermal noise. After the test, the window slides on to the next test case. 
 

Let 
 
 rΔ =radar range resolution (A1) 
 
and kr be the range denoted by the thk range cell 
 
 ( ) rkrk Δ−= 1 . (A2) 
 
Furthermore, let 
 
 ( ) ≡lkrA θ, amplitude at range kr  and bearing lθ . (A3) 
 
Let 
 

 
R

RN
Δ

= max
max  (A4) 

 
where  
 
 =maxN maximum number of range cells used by radar (A5) 
 
and 
 
 =maxR maximum range unambiguously detected by radar. (A6) 
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Let the sliding window be of length 32 +m . Numbering of range cells starts at the position plan 
indicator’s center. The first range cell that can be tested is 2+= mk . The last range cell that can be 
tested is ( )1mNk max +−= . So the window can test range cells 
 
 ( ){ }max2, 3, , 1 .m m N mΓ = + + − +K  (A7) 
 
Consider the thk test cell taken from the set Γ  given in Eq. (A7) and let 
 
 ( ) ( ){ }1,,3,2,maxargmax +−−−=≡− mkkkjrAj lj

j
lower Kθ , (A8) 

 
 ( ) ( ){ }1,,3,2,maxargmax ++++=≡− mkkkjrAj lj

j
upper Kθ , (A9) 

 

 ( ) ( )∑
−

≡
−≠

≤≤
−−−

max

1
1 ,

1
1,

lowerjj
mj

ljklkaveragelower rA
m

rA θθ , (A10) 

 

 ( ) ( )∑
−

≡
−≠

≤≤
++−

max

1
1 ,

1
1,

upperjj
mj

ljklkaverageupper rA
m

rA θθ , (A11) 

and 
 
 ( ) ( ) ( )[ ]lkaverageupperlkaveragelowerlkaveragemax ,rA,,rAmax,rA θθθ −−− ≡ . (A12) 

 
The value passed by the DL is 
 

 
( ) ( ) ( )[ ] ( )

( ) ( )[ ] ThermallkaveragelkCFAR

lpkCFARlkaveragelklpkvaluepassed

ArArA

rArArArA

θθετχ

θτθθχθ

,,

,,,,

max

max

−

+−+−

+−−

+−−≡
 (A13) 

 
where Γ∈k , the testable cells as given by Eq. (A7), and 0>ε  is related to the smallest non-zero A to D 
output. A convenient value of ε  might be ( )2ln=ε  since the A to D converter maps signals into the 
integers 1 to 2047. Finally, 
 
 ≡ThermalA amplitude due to thermal noise, (A14) 

 

 ( )
⎩
⎨
⎧

<
≥

=
00
01

t
t

tχ ,  (A15) 

 
 ≡CFARτ CFAR threshold, (A16) 

 
and 
 1,0,1p −≡ . (A17) 

 
The index p  in Eq. (A13) and Eq. (A17) takes into account not only the test cell k , but also the 

guard cells 1k − and 1k +  to the right and the left of k . 
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Appendix B 
 
OVERALL FITNESS, RULE FITNESS, INPUT-OUTPUT FITNESS, DATABASE STRUCTURE, 

AND UNCERTAINTY ANALYSIS FOR GP DATA MINING 
 
 

All GPs must have a fitness function to evaluate the evolving population of chromosomes. The fitness 
function, referred to as the overall fitness, OFf , is actually the sum of two other fitness functions. These 
functions are the rule fitness, RFf , and the input-output fitness, IOFf . The rule fitness is given in Eq. 
(B1), where the indicator function iI  is unity if the ith rule in Table B1 is satisfied and is zero otherwise, 
and iv  is the value of the ith rule as given in Table B1: 
 

 ∑
=

⋅=
12

1i
iiRF vIf . (B1) 

 
Table B1 is a rule summary having its origin in human expertise, common sense, economy, and other 
sources of information. 
 

Let jDL denote the jth element of the evolving population of chromosomes within the GP for 

psm,,2,1j K= where psm is the population size, i.e., the number of chromosomes. Let each jDL consist of 
an OR2 or AND2 that connects two subgraphs, denoted as leftDLj _  and rightDL j _ . Let ( )ς_jDLl  be the 
length, i.e., the number of nodes in ς_jDL , for { }rightleft,∈ς . According to Table B1, if ( )ς_jDLl  is 
greater than or equal to 20, then the parsimony pressure, ( )ςα _jp DLl⋅ , is subtracted from the rule fitness 
followed by division by 100, ultimately yielding the rule score, denoted as RSg . This subtraction is done 
if either ( )leftDLl j _  or ( )rightDLl j _  exceeds 20. The quantity pα  is referred to as the parsimony 
coefficient. The rule score can be expressed compactly as 
 

 
( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

_ _ 20 _
100

_ _ 20 _ .
100

RS j RF j j p j

RF j j p j

c
g DL f DL left l DL left l DL left

c
f DL right l DL right l DL right

χ α

χ α

= − − ⋅ ⋅

+ − − ⋅ ⋅

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

 (B2) 

 
The parameter c in Eq. (B2) is the product of the indicator functions for rules 14–19 in Table B1 for 

the closed-form results in this section, and c is the product of the indicator functions for rules 14 and 15 
for the computational results in section B2. 
 

If the rule score exceeds the rule threshold denoted as RTκ , then and only then is the input-output 
fitness evaluated. By forcing the rule score to exceed a threshold before the input-output fitness is 
evaluated, a great deal of computational complexity is avoided. 
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Table B1 — Rule Set for Closed-Form Results and Computational Genetic Programming Experiments 
 

RULE RULE SUMMARY 
R1 If either OR3DELAY or AND3DELAY are present during rule fitness evaluation, add 51 =ν . 
R2 If R1 is satisfied and OR3DELAY or AND3DELAY are at the end during rule fitness 

evaluation, add 62 =ν . 
R3 If AND3 or OR3 are present during fitness evaluation, add 53 =ν . 
R4 If none of the three comparators denoted as 3,2,1i,Hi =  follow AND3 or OR3 during fitness 

evaluation, add 34 =ν . 
R5 If there is only one delay present, i.e., in the form of OR3DELAY or AND3DELAY, during 

rule fitness evaluation, add 55 =ν . 
R6 Let  

 
have_not_alone_signal = the number of times that SUM_SIG_i or MAX_SIG_i, i={1,2,3} or 
2 or 3 is fed into 3,2,1i,Hi = or DIFF. 
 
Let  
 
num_signals= the number of times SUM_SIG_i or MAX_SIG_i for i={1,2,3} or 2 or 3 
appear in the chromosome. 
 

During rule fitness evaluation add ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

signalsnum
signalalonenothave

_
___56ν . 

R7 If none of the 3,2,1i,Hi =  are adjacent to each other, then during fitness evaluation add 
57 =ν . 

R8 no_diff2H= number of times a DIFF feeds into a Heaviside step function. 
 
no_diff = number of DIFF operators in the DL. During rule fitness evaluation add  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
H2diff_no58ν . 

R9 no_diffw2sig= number of times two consecutive signals feed into a DIFF. During rule 

fitness evaluation add ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
sig2diffw_no59ν . 

R10 no_diffw2diffsig= number of times a DIFF takes two different signals. During rule fitness 

evaluation add ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
diffsig2diffw_no510ν . 

R11 no_maxorsum = number of times DIFF takes two MAX_SIG input or two SUM_SIG inputs. 

During rule fitness evaluation add ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

diff_no
orsummax_no511ν . 

R12 During rule fitness evaluation add diff_no
5

12 =ν . 

R13 Penalize the rule fitness by subtracting parsimony pressure if the chromosome length is 
equal to or greater than 20 and divide the difference by 100. 

 
 
 
 



 
Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery 23 

 

Table B1 (continued) — Rule Set for Closed-Form Results and Computational Genetic Programming 
Experiments 

 
RULE RULE SUMMARY 
R14 There are two subgraphs of the same form. One subgraph of the DL uses SIG2 and SIG123 

as input; the other side uses SIG3 and SIG123 as input, i.e., 
 

{ } { }
βασσ

}3,2,1{2}3,2,1{231 AHAHAdiffAHDCsubgraph rqm=  
 
and  
 

{ } { }
βασσ

}3,2,1{3}3,2,1{332 AHAHAdiffAHDCsubgraph rqm=  
 
If this rule is satisfied then 1I14 = , otherwise 0I14 = . 

R15 Join the subgraphs using OR2 or AND2, i.e., 
 

βασσβασσ
}3,2,1{}3{}3,2,1{}3{3}3,2,1{}2{}3,2,1{}2{32 AHAHAdiffAHDCAHAHAdiffAHDCCz rqmrqm=  

 
If this rule is satisfied then 115 =I , otherwise 015 =I . 

R16 The threshold 2τ  is used after the DIFF. 
 

βασσβασσ
}3,2,1{}3{}3,2,1{}3{23}3,2,1{}2{}3,2,1{}2{232 AHAHAdiffAHDCAHAHAdiffAHDCCz rqrq=  

 
If this rule is satisfied then 116 =I , otherwise 016 =I . 

R17 All thresholds must be used. If this rule is satisfied then 117 =I , otherwise 017 =I . 
R18 Assume that σβ ≠  and σα = . If this rule is satisfied then 118 =I , otherwise 018 =I . 
R19 Each subgraph should be as short as is consistent with the above rules. If this rule is 

satisfied then 119 =I , otherwise 019 =I . 
 
 
 

Let TDL denote the true DL diagram that underlies the sensor device used to construct the input-
output database. For the examples considered in this paper, let there be three signals. The input-output 
database is assumed to have the following structure: 
 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

mmmm
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M
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22
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2

2
1

11
3

1
2

1
1

MMMM
. (B3) 

 

Where 
k
jS  is the three-time-window input from the jth source for the kth  input, { }1,0Bk ∈  is the kth  output 

from TDL  for  k=1,2,…, m; i.e.,  
 

 m,,2,1kfor;S,S,SDLB
k
3

k
2

k
1

Tk K=⎟
⎠
⎞

⎜
⎝
⎛= . (B4) 
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The input-output fitness for the jth chromosome, jDL ,  is defined as 
 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ −⎟

⎠
⎞

⎜
⎝
⎛+=

=

2m

1k

kk
3

k
2

k
1jDBIOF BS,S,SDL11M,jf . (B5) 

 
The overall fitness, OFf , for the jth chromosome can be written as 
 
 ( ) ( ) ( )( ) ( )DBIOFRTjRSjRSDBOF M,jfDLgDLgM,jf ⋅−+= κχ . (B6) 
 

It is important to recall that in actual implementation, the input-output fitness is only evaluated if the 
rule fitness is greater than or equal to the rule threshold. Selectively evaluating the input-output fitness 
greatly reduces the computational complexity and hence the run time of the GP. 

B1. Closed-Form Results for the Class of DL Maps and Database that Maximize the Various 
Fitness Functions 
 

It is possible through inspection of Eq. (B2) to write down a set, denoted as MLDLZ , of minimum 
length DL maps that result in a global maximum for the rule score. Analysis of MLDLZ  makes it possible 
to also write down a closed-form expression for the image set, denoted as MLDLR , under the DLs making 
up MLDLZ . The elements of MLDLR  can be written as explicit functions of the parameters that characterize 
distinct elements of MLDLZ . From the explicit form of MLDLR  it is possible to invert out a database matrix 
with closed-form expressions for its elements. The closed-form expressions are given in terms of sensor 
system parameters. Table B2 gives a small subset of a database created in this fashion. A database given 
explicitly in terms of the sensor system parameters can be used in uncertainty analysis and GP 
convergence tests. It is readily shown using the rule set and the closed-form database that emerges from 
this approach that loss of rules or rows of the input-output database can result in not one but many DLs 
that maximize the overall fitness. 
 
 
 

Table B2 — Parameters for a Subset of the Input-Output Database Derived from the Rules in Table B1 
 

Input-Output Table for Three-Signal Example  
 

Component 
 

q
1γ  q

2
γ  q

3
γ  'q

1
γ  'q

2
γ  'q

3
γ  Window2 Window3 Output 

OR2 310τ  1  3102 τ⋅−  0  0  0  ( )NO
r

 ( )NO
r

 1  

OR3DELAY 310τ  310τ−  310τ−  0  0  0  ( )NO
r

 ( )NO
r

 1  

AND3 1  1  310τ  0  0  0  ( )NO
r

 ( )NO
r

 0  

AND3 310τ  1  1  0  0  0  ( )NO
r

 ( )NO
r

 0  

3τ  along 
Auxillary 
Antenna 

110τ  110τ  310τ−  0  0  0  ( )NO
r

 ( )NO
r

 1  
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Preliminary to the development described above it is useful to define the following subsets of the 
terminal and function sets. Let  
 
 { }DELAY3OR,DELAY3ANDDELAYD =∈ , (B7) 
 
 { }3OR,3AND3CONNC3 =∈ , (B8) 
 
 { }2OR,2AND2CONNC2 =∈ , (B9) 
 
 { }321 H,H,HCOMP = , (B10) 
 
and 
 

 {
}.123SIG_SUM,3SIG_SUM,2SIG_SUM,1SIG_SUM

,123SIG_MAX,3SIG_MAX,2SIG_MAX,1SIG_MAXMAXSUMA,A,A,A jiba K=∈βασσ

 (B11) 

 
The parameters ,σ α  , and β  carry the value MAX or SUM and i,b,a  and j  take the values 

{ }{ }{ },3,2,1  and { }3,2,1 . As examples of this notation, { }
MAX
3A  corresponds to MAX_SIG3, whereas { }

SUM
3,2,1A  

corresponds to SUM_SIG123. 
 

The subclass of DLs arising from rules 1–12 that are of minimum length and maximize the rule score 
for that length take the following form: 
 
 ( ) βασσβασ jriqbal AHAHADIFFAHDCrqljibaCDz 33 ,,,,,,,,,,, = , (B12) 
 
where 
 
 { } { } { } { } 3,2,1r,q,l;3,2,1,3,2,1b,aba ==≠ . (B13) 
 

Rules 1–13 govern only half the DL design, i.e., one subgraph of the tree. It follows from rule 14 that 
the other subgraph of the DL map will also take a form given by Eq. (B12). It follows from rules 15–19 
that the DL map that includes both subgraphs takes the form 
 

 
( ) { } { } { } { }( )

{ } { } { } { }( )
3 2 3

3

, , , , , 2, , , , 2 , 1, 2, 3 , 2 , 1, 2, 3 , , , , 2, ,

, , 3 , 1, 2, 3 , 3 , 1, 2, 3 , , , , 2, , ,

Z D C q r C z D C q r

z D C q r

σ σ β σ σ β

σ σ β

= ⋅
 (B14) 

 
where 
 
 βσ ≠ . (B15) 
 
Also, from rule 17, all thresholds must be used, so since threshold two has been used already, once one 
additional threshold is assigned, the other is known. 
 

Equation (B14) gives a typical element of MLDLZ . The use of all 19 rules in Table B1 reduces MLDLZ  
to a set with 32 elements. It would hardly be worth using a GP for such a small number of alternative 
solutions. The 19 rules of Table B1 allow simple closed-form results for the elements of MLDLZ . 
Likewise, the simplicity of MLDLZ  arising from the 19 rules allows a database to be inverted in closed 



 
26  J. F. Smith III 

 

form. The overall fitness will have a single global maximum at the desired DL map, i.e., TDL . The 
database subset given in Table B2, taken from a much larger database, is also a closed-form result, 
exhibiting the database matrix’s explicit dependence on system parameters, i.e., thresholds. Table B2 is a 
subset of a database constructed using only rules 1–15 from Table B1. 

 
The first and one of the most important steps in data mining is the construction of the database. The 

database is generally constructed by, or at least “cleansed” by, a domain expert so that it reflects truth. For 
this example it is valuable to construct an ideal database. This database can actually be derived 
mathematically and rendered in closed form as explicit functions of the system parameters and DL graph 
labels that must be determined. A database of this kind is very effective in studying the effect of 
uncertainty on the ultimate DL evolved. For the analysis in this report, uncertainty refers to the loss of a 
rule or rules from Table B1 or the loss of at least one row from the database matrix given in Table B2. 
 

To understand the database subset, it is essential to define some notation. Let 
 

 ( ), , 2 ; 1,2,3; 1,2, ,q q q
i i i O N for i q mγ γ⎡ ⎤′Γ ≡ − = =

⎣ ⎦
urr

K ; (B16) 

 

where q
iγ  and q

iγ ′  are the first and second pulse values for the signal denoted by q
iΓ
r

. The quantity ( )nO  

is defined to be a row vector consisting of n zeros. The quantity q
iΓ
r

 is the ith source signal for the qth 
measurement to be stored in the database, i.e., the qth row in the database matrix Eq. (B3) for one time 
window. 
 

Table B2 provides a subset of a database derived by solving an analog of Eq. (B14) for rules 1-15, by 
inspection or solving systems of inequalities arising from the analog of Eq. (B14). Each row of Table B2 
is determined to encourage the GP to place a particular label on the graph, the label of interest being given 
in the first column of that row. As indicated in the first row, the second through seventh columns give the 

values of q
iγ  and q

iγ ′  for signals i=1,2, and 3. The entry ( )NO
r

 implies there are N zeros in the window. 
There is no need to have separate entries for each source signal for windows two and three as all three 
signals exhibit the same behavior, i.e., they have zero entries for the final two windows. The final column 
gives the simulated measured output of the system of interest. 
 

Also, under ideal conditions there is great freedom in specifying input. When making measurements 
using a real sensor device, the freedom to specify any desired input does not exist. The sensor device will 
only accept certain input, and the output is likely to be corrupted by noise and might be characterized by 
lost data. Given these difficulties, a real database must be much larger to be able to deal with corruption 
and because the observer cannot select the most desirable input-output entries. 
 

The rule set in Table B1 and database in Table B2 have value for understanding the nature of 
uncertainty in expertise and data. If certain rules are removed from Table B1, the number of potential DL 
maps grows rapidly. For example, if Rule 17 is eliminated from Table B1, then between the remaining 
rules and the database there is not enough information to uniquely specify the threshold labeling. So TDL  
is no longer uniquely determined. The resulting DL maps will have underlying graphs that in graph-
theoretic terms are isomorphic to the graph of TDL . An isomorphism exists between two graphs if there 
exists a map that establishes a one-to-one correspondence between the vertices of the two graphs and the 
map preserves edges. If the goal of the observer is to determine a signal that will produce a certain 
response from the sensor device, then it is often sufficient to obtain DL maps that differ only in threshold 
labeling. If the observer knows the maximum possible threshold for the system, but does not know which 
thresholds label particular nodes, he can in many instances create a signal that gives the desired response 
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by simply increasing the energy in the signal to correspond to the potential of the maximum threshold 
labeling a particular node. So in this case, the rule and the input-output database uncertainty are not 
extreme liabilities. The input signal’s functional form does not change; the true cost of uncertainty is a 
minor increase in the energy contained in the signal.  

B2. DATA MINING RESULTS 
 

In this section, two different DL schemes data mined by the GP are considered. These two examples 
are representative of the many experiments that have been conducted to show the effectiveness of the GP-
based data mining procedure presented in this paper. The first example is the DL represented in Eq. (14) 
and in Fig. 1. This DL will assume the value of TDL for the discussion below. Using various databases too 
large to reproduce here and different random number generator seeds, the GP was able to reverse engineer 
Eq. (14) in no more than 76 GP generations. The different number of generations and amounts of CPU 
time required reflect the effect of different input-output databases and also the random number generator 
seeds. One database may constrain the evolutionary process more than another, resulting in fitness values 
that over time push the population more rapidly toward TDL . Also, since the initial population is 
generated randomly, and crossover, mutation, architecture-altering steps (AAS), and symmetrical 
replication (SR) have random aspects, a change in the seed of the random number generator can also 
impact run time. 
 

To get a feel for the evolutionary process it is useful to examine some intermediate generations that 
lead to TDL . For the case in which Eq. (14) is reverse engineered in 76 generations, the elite chromosomes 
found for different generations are provided in Table B3, with the 76th generation reproducing the correct 
chromosome as given in Eq. (14). 

 
 
 

Table B3 — Evolution of the DL Depicted in Figure 1 
 
Generation Best Chromosome found in the Population for the Indicated Generation 

1 OR2 H2 DIFF SUM_SIG123 MAX_SIG123 OR2 DIFF MAX_SIG2 H1 MAX_SIG2 
SUM_SIG3 

25 OR2 AND3DELAY OR3 H3 MAX_SIG2 H2 SUM_SIG123 H2 DIFF MAX_SIG2 
MAX_SIG123 AND3DELAY OR3 H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 

MAX_SIG123  
40 OR2 OR3DELAY AND3 H1 MAX_SIG2 H1 MAX_SIG123 H2 DIFF SUM_SIG2 

SUM_SIG123 AND3DELAY AND3 H3 SUM_SIG3 H1 SUM_SIG2 H2 DIFF SUM_SIG2 
SUM_SIG3 

50 OR2 OR3DELAY AND3 H1 MAX_SIG2 H1 MAX_SIG123 H2 DIFF SUM_SIG2 
SUM_SIG123 OR3DELAY AND3 H1 MAX_SIG3 H1 MAX_SIG123 H2 DIFF SUM_SIG3 

SUM_SIG123 
76 OR2 OR3DELAY AND3 H1 MAX_SIG123 H3 SUM_SIG2 H2 DIFF SUM_SIG2 

SUM_SIG123 OR3DELAY AND3 H1 MAX_SIG123 H3 SUM_SIG3 H2 DIFF SUM_SIG3 
SUM_SIG123  

 
 
 

The chromosomes entered into Table B3 reflect some of the characteristics observed during the 
evolutionary process. From the first generation forward, the GP is able to find best candidates that have 
an OR2 at the end of the chromosome. This property arises from rule 15 in Table B1. The presence of two 
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DIFF operators in the first generation is also promising. The best chromosome for the first generation is 
much too short when compared to the desired result. 
 

New innovations are found in generation 25 in that both arguments of both DIFFs use MAX functions 
as well as the SIG123 structure. Even though it is expected that both arguments will ultimately use SUM 
functions, the use of a common function for both arguments may show evolution in the proper direction. 
Both DIFF operators are preceded by H2 which is what is found in Eq. (14). Even with these innovations, 
the best chromosome of generation 25 is far from the correct result.  
 

The best chromosome of the 40th generation has subgraphs consistent with the closed-form result of 
Eq. (B12). All generations after the 26th have elite chromosomes that assume this form. The 
computational results use a smaller set of rules, i.e., rules 1–15, than those used in deriving Eq. (B13) 
through Eq. (B15), so the rules alone do not require that the solutions converge to this form. The GP’s 
effort from generation 27 through 76 involves finding a solution with the proper node labels. Various 
rows in the input-output database contribute to proper labeling; for example, if the fifth row in the 
database subset in Table B2 is deleted, it is likely that the final GP solution will not have proper threshold 
labeling. An improper threshold value is undesirable from the standpoint of trying to reproduce the exact 
DL. However, if the goal is to produce an input signal that produces unity as an output, then even with the 
wrong threshold value, the desired output is obtained as long as the input signal has sufficient energy to 
take into account uncertainty. In conclusion, the ultimate cost of information uncertainty in this case is a 
small amount of additional energy. 
 

The best chromosome of the 50th generation is far closer to Eq. (14). The MAX functions in the 
arguments of the DIFF have been replaced by SUM functions. The arguments of the DIFF operators are 
the ones for the final result and the output of both DIFFs is passed into H2 as found in Eq. (14). In this 
chromosome, replacing H1 MAX_SIG2 with H3 SUM_SIG2 and H1 MAX_SIG3 with H3 SUM_SIG3 would 
yield the correct result. Finally, the desired result is found in generation 76. 
 

For the second example, consider the DL given below in Eq. (B17) as TDL , i.e., truth: 
 
 OR2 OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 MAX_SIG123 

OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG3 H2 DIFF MAX_SIG3 MAX_SIG123. (B17)

 
The GP’s evolutionary process for inverting Eq. (B17) is summarized in Table B4. 
 

This example is similar to Eq. (14); in fact if in Eq. (14) the MAX operations are replaced by the SUM 
operation and SUM replaced by MAX then Eq. (B17) is obtained. Given that Eq. (14) and Eq. (B17) differ 
only in labeling of the underlying graph, it is anticipated that the GP-based evolutionary processes that 
yield Eq. (14) and Eq. (B17) will be similar. This anticipation is borne out, but there are some differences 
in the evolutionary processes. One significant difference is that the chromosome in Eq. (B17) is evolved 
in a smaller number of generations than the one in Eq. (14). There is nothing obvious about the rule set or 
input-output database used for both chromosomes that would favor one over the other. Experimentation 
seems to indicate that the difference in the number of generations required is related to the seed of the 
random number generator.  
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Table B4 — Evolution of the DL given in Eq. (B17) 
 

Generation Best Chromosome found in the Population for the Indicated Generation 
1 OR2 SUM_SIG2 AND3DELAY DIFF SUM_SIG2 SUM_SIG123 
8 OR2 AND3DELAY DIFF SUM_SIG3 SUM_SIG123 AND3DELAY H2 DIFF 

MAX_SIG2 MAX_SIG123 
16 OR2 AND3DELAY OR3 H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 

MAX_SIG123 OR3DELAY H2 OR3 H2 SUM_SIG2 SUM_SIG3 H2 DIFF MAX_SIG2 
MAX_SIG123 

30 OR2 OR3DELAY AND3 H2 MAX_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 
MAX_SIG123 AND3DELAY AND3 H3 SUM_SIG2 H1 SUM_SIG123 H2 DIFF 

SUM_SIG2 SUM_SIG3 
46 OR2 OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG2 H2 DIFF MAX_SIG2 

MAX_SIG123 OR3DELAY AND3 H1 SUM_SIG123 H3 MAX_SIG3 H2 DIFF 
MAX_SIG3 MAX_SIG123 

 
 
 

Just as with the example in Table B3, the best chromosome of the first generation has an OR2 at the 
end, but is otherwise too short and far removed from the correct answer. By the eighth generation the 
H2DIFF MAX_SIG2 MAX_SIG123 structure has emerged. The best chromosome of the 16th generation 
preserves the best features of previous generations and also makes use of an OR3DELAY, but still has 
many defects. For all generations after the 26th generation, the elite chromosome has two subgraphs that 
take the form found in closed form in Eq. (B12). The elite chromosome of the 30th generation has many 
correct labels and incorrect ones. It illustrates how evolution can fluctuate from generation to generation, 
producing individuals of higher fitness, but departing significantly from the true DL in form. Finally, in 
generation 46 the GP converges, having produced the correct DL design. 
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